The promises of molecular targeted therapies and the challenges of the intrinsic and acquired resistance

> Marco A. Pierotti Scientific Director

OECI Scientific Conference on Translational Cancer Research Copenhagen, June 2007

High-throughput tools

Molecular characterization of tumors

Molecular classification

Targeted therapy

MOLECULAR TARGETED THERAPY

- "Drugable" direct target (onco)gene products

- "Drugable" indirect target altered pathways (TSG)

MOLECULAR TARGETED THERAPY

"Drugable" direct target (onco)gene products

a) Cell addiction (viability)c) Cell growth dependance

MOLECULAR TARGETED THERAPY

• CELL ADDICTION

(oncogene addiction)

BCR/ABL in CMLc-Kit in GIST

b) CELL GROWTH DEPENDANCE

(low oncogene addiction)

- PDGFRB in DFSP - PDGFRB in Chordomas

MOLECULAR CLASSIFICATION - TARGETED THERAPY

Imatinib Paradigm

One drug for several histologically different tumors:

- CML (haematopoyetic)
- GIST (stromal-derivation)
- DFSP (sarcoma)
- Chordomas

(notochorda derivation)

GIST: Intra-abdominal mesenchymal/stromal neoplasm, most probably from interstitial cells of Cajal origin, displaying KIT (CD117) immunopositivity

Diagnosis of Gastrointestinal Stromal Tumors: A consensus Approach. Hum Pathol 2002 May;33:459-465

KIT and PDGFRA molecular modeling

for GIST sensitivity and resistance

to Imatinib

KIT Kinase domain

PDGFRA Kinase domain

Blue: exon 13 Yellow : exon 17

S. Pricl, E Tamborini et al., Submitted

Red: exon 11 wt juxtamembran domain β-hairpin loop TK1 C-Helix TK2 Activation Loop

Red: exon 12 wt

Blue: exon 14 Yellow : exon 18

How ATP is located into the pocket:

It binds the **ACTIVE/OPEN** conformation of the kinase

S. Pricl, E Tamborini et al., Submitted

An intracellular inhibitor:

Gleevec/Imatinib/STI571

2-phenylaminopyrimidine derivative

How Imatinib is located into the pocket:

It binds the **INACTIVE/CLOSED** conformation of the kinase hampering the entrance of ATP

S. Pricl, E Tamborini et al., Submitted

Mutation HOT-SPOTs in GISTs

•Exon 11 KIT	(juxtmembrane domain)	exon 12 PDGFRA
•Exon 9 KIT	(extracellular domain)	
•Exon 13 KIT	(I part of TK domain)	exon 14 PDGFRA
•Exon 17 KIT	(II part of TK domain)	exon 18 PDGFRA

Correlation between mutated KIT exons and response to Imatinib

Imatinib response

Primary or intrinsic resistance is due

to a conformation of the ATP pocket which

does not fit with the Imatinib entrance.

KIT molecular modeling for

Imatinib sensitivity of exon11 mutations:

KIT receptor

Sterical hindrance of β -hairpin removed by exon 11 mutation

S. Pricl, E Tamborini et al., Submitted

Secondary or acquired reisistance is due to secondary alterations affecting the 3D structure of the kinase domain

> Many mechanisms have been reported to be responsible for secondary resistance to Imatinib, including gene amplification, loss of the target, functional resistance.

We will focus on secondary mutations affecting the ATP pocket of the receptors

To date secondary mutations are reported in KIT

Exon 17 C809G D816E/G/H D820I/Y/N/A/G/E N822K/Y/H Y823D D716N

Functional effect of the identified secondary mutations

Experimental design:

1. Transient transfection of COS1 cells with different forms of c-KIT cDNA

2. Imatinib treatment of transfected cells

3. Biochemical analyses of phopshorylation (activation) status of KIT receptor.

Molecular modeling of KIT carrying T670I

KIT Exon 11 mutation (delta 559)

KIT Exon 11 mutation (delta 559) + T670I

E. Tamborini et al., Oncogene, 2006

T670I

In a sort of a domino effect:

the topical stabilizing H-bond between aminopyridine nitrogen of Imatinib and the side chain Og1 atom of the gatekeeper residue T no longer exists

Threonine T wt residue

Molecular modeling of KIT carrying V654A

KIT Exon 11 mutation (delta 559)

KIT Exon 11 mutation (delta 559) + V654A

E. Tamborini et al., Oncogene, 2006

Molecular modeling of KIT carrying V654A

E. Tamborini et al., Oncogene, 2006

In conclusion:

Two types of KIT mutations have been defined associated with Imatinib Secondary/Acquired resistance:

Type I (T670I) which profoundly affects ATP pocket structure rendering fully ineffective Imatinib.

Type II (V654A) Which decreases Imatinib affinity for ATP binding pocket. A responsiveness is detectable increasing the dose.

Molecular modeling has provided the structural bases of the biological results and has suggested different therapeutic modalities.

Experimental Molelcular Pathology

S. Pilotti E. Tamborini

P. Casieri E. Conca F. Miselli T. Negri M. Orsenigo M. Virdis

Department of Experimental Oncology

C. Greco MA. Pierotti

INT Clinical Staff

PG. Casali A. Gronchi R. Bertulli M. Fiore P.Coco C. Mussi E.Fumagalli F. Grosso S. Stacchiotti

Molecular Simulation Engineering (MOSE) Laboratory, University of Trieste

S. Pricl M. S. Panemi M. Ferrone

